平凡社 世界大百科事典

空間において,1定点から一定の距離にある点の全体を球面または球といい,定点をその中心という。中心と球面の点を結ぶ線分またはその長さを半径といい,球面の2点を結ぶ線分が中心を通るとき,この線分またはその長さを直径という。中心からの距離が半径より小さい点の全体を球面の内部,大きい点の全体を球面の外部という。球面とその内部を合わせたものも球と呼ばれる。球面を平面で切れば切口は円となる。この円を平面が中心を通るときには大円といい,そうでないときには小円という。大円の半径は球の半径に等しく,小円の半径は球の半径より小さい。大円の平面に垂直な球の直径を大円の軸といい,その両端の2点を大円の極という。球の直径の両端の2点を対心点という。球面の2点A,Bを通る大円は,A,Bが対心点でなければただ一つ定まり,A,Bが対心点ならば無数にある。球面の2点A,Bを結ぶ球面上の曲線のうち最小の長さをもつものはA,Bを通る大円の(劣)弧ABで,この長さをAとBの球面距離という。半径がrの球面の面積は4πr2で,その球の体積は4/3πr3である。表面積が与えられた立体の中で最大の体積をもつものは球である。球面または球は中心を通る平面によって互いに対称な二つの部分に分けられる。その各部分を半球面または半球という。球が平面と交わるとき,この平面の一方の側にある球面の部分は球冠と呼ばれ,球冠とこの平面で囲まれた立体は球欠と呼ばれることがある。球面が二つの平行な平面に交わるとき,これら2平面にはさまれた球面の部分を球帯といい,球帯とこれらの2平面で囲まれた立体を球台という。直線または平面が球面とただ1点を共有するとき,それらは球面に接するといい,共有点を接点という。この場合,直線を球の接線,平面を球の接平面という。接線や接平面は接点を通る半径に垂直である。二つの球面がただ1点を共有するとき,それらは接するといい,共有点を接点という。この場合,一方の球面の点が接点を除いて他方の球面の内部にあるか外部にあるかに応じて,これら2球は内接または外接するという。2球が接するとき,2球の中心を結ぶ直線上に接点がある。空間に直交座標を導入すれば,中心が(abc)で半径がrである球面は,(xa2+(yb2+(zc2r2を満たす点(xyz)の全体である。これを一般化して,n+1次元ユークリッド空間Rn1の1点(a1a2,……,an+1)と正数rに対し,Rn1の点(x1x2,……,xn+1)で(x1a12+(x2a22+……+(xn+1an+12r2を満たすものの全体をn次元球面という。二次元球面はふつうの球面で,一次元球面は円周,0次元球面は2点{+1,-1}である。

中岡 稔
図1~図2
図1~図2