平凡社 世界大百科事典

鋼材

鋼の形材,板材,管材,線材をいう。鋼には炭素を含む普通鋼と,特別に用途を考慮してニッケル,クロム,コバルトなどを添加した特殊鋼とがあるが,鋼材のほとんどはこれらの鋼の圧延によって製造される。なお狭い意味では建設用資材としての鉄鋼製品を鋼材と呼ぶことが多い。建設用資材としてよく使用される鋼材は,形鋼と棒鋼である。基礎工事に必要な土止め用の形鋼としてはH形鋼やI形鋼,箱形鋼などである。建造物の規模によって,使用する鋼材の断面形状の寸法に大小がある。そこで製造する側では,大型・中型・小型などの分類をしている。小型の鋼材としてはL形鋼,山形鋼などの断面のものがあり,条鋼もほとんどこの部類に入る。中型・大型の鋼材は圧延機の動力,供給鋼片の寸法と重量により定まってくる場合が多い。圧延の機構や理論の側面からは,このような大きさによる分類はあまり意味がない。大きさが問題となるのは冷却過程であって,寸法が大きいことから熱容量が大きくて均一冷却が困難になることや,大寸法の割に厚さが小さい部分があると不均一冷却の傾向を助長するなどの問題が生じてくる。また,これらの圧延過程での変形の不均一とともに,製品のそりやよじれ,さらに波などの形状不良の原因にもなりかねない。現在では,熱膨張や組織の変化なども考慮した解析法が発達したので,圧延条件と冷却条件とから形状不良を抑制する方法を合理的に求めることができるようになった。また圧延後の材料が強靱(きようじん)性を増すような熱履歴を与えることも容易となってきた。

 形鋼以外で鋼材と呼ばれるものに,鉄筋コンクリートの鉄筋用の棒鋼,異形棒鋼,線材などがある。これらも,いわゆる形鋼の小型ラインとほぼ同規模の熱間圧延によって製造されている。

木原 諄二
平凡社 世界大百科事典

〈こう〉ともいう。国際標準化機構(ISO)では,〈鉄を主成分とし通常固体で要求される形状に成形加工でき,ふつう2.0%(重量)以下の炭素とその他の元素を含有する材料〉と定義している。炭素量が0.1%前後までの鋼は軟らかく,焼入れしてもあまり硬化せず鍛鉄ともいわれる。2%以上の炭素を含有したものは鋳鉄と呼ばれ,鋼を鋳物として用いるときは鋳鋼と呼ぶ(特殊鋼とは普通鋼以外の鋼をいい,合金鋼,特別に高品質が保証されている炭素鋼を含む。

鋼の製造

材料としての鋼が製造されるまでの主要なプロセスは,転炉あるいは電気炉による製鋼→連続鋳造あるいは造塊・分塊圧延→圧延→(熱処理あるいは表面処理)→製品で,高炉を有する工場では製鋼の前に高炉による銑鉄の製造(製銑)が入る(製鉄・製鋼)。鋼の性質は,(1)合金元素の種類,量,(2)介在物や微量元素の種類,量,存在形態など,製銑,製鋼,圧延過程に関係する要因,(3)熱処理(あるいは加工熱処理),表面処理など,によって大きく変化する。良質の鋼を製造するために,今日では上述の製造過程すべてが厳しく管理,制御されている。鋼の生産量(使用量)は非鉄金属,プラスチックなど他の材料と比べ圧倒的に多く,生産量がこれに匹敵する材料はセメントだけである。

鋼の組織と熱処理

鉄と炭素の合金は,一般に相変態

鋼の歴史

鋼と人間とのかかわりは紀元前にさかのぼる。古代エジプトの遺跡から発見された鉄器の調査によると,前1200年ころの小刀は浸炭されており,前900年ころの斧と前700年ころののみは浸炭されたうえ焼入れされ,前300年ころの小刀は浸炭,焼入れののち焼戻しされているという。また中国では前6世紀に鉄の鋳造がすでに行われていたらしい。鍛鉄,鋼は高炉法が生まれる14~15世紀以前は,鉄鉱石から直接製造されていた。すなわち鉱石と木炭を炉の中に詰め風を送って木炭を燃やし,鍛造可能な半溶融状の鉄をつくっていたが,高炉法により溶けた鉄(鋳鉄)が多量に製造できるようになった。鋳鉄は炭素を多く含み,鋼が半溶融状態にしかならない温度でも容易に溶ける。高炉法の出現は鉄の鋳造という新しい産業を開拓し,鋼を鉱石から直接製造する方法に代わって,まず高炉で溶けた鋳鉄(銑鉄とも呼ばれる)をつくり,精錬炉で可鍛鉄にするという2段階法を生みだした。溶融状の鋼は1740年イギリスのハンツマンBenjamin Huntsman(1704-76)により初めてつくられた。この鋼はるつぼに原料を密閉し加熱して溶かすので,るつぼ鋼とも呼ばれる。一方,18世紀ころから鋳鉄の製造法として反射炉が用いられはじめ大砲などが鋳造されていたが,イギリスのコートHenry Cort(1740-1800)は,反射炉をさらにくふうして銑鉄の溶融だけでなく,溶融した銑鉄をかくはん(攪拌)することによって半溶融状の可鍛鉄をつくることに成功した。この反射炉はとくにパドル炉と呼ばれるが,19世紀後半W.シーメンズ,P.E.マルタンの努力によって反射炉はさらに改良され,溶融状態の鋼を容易に製造できる平炉がつくられた。それより少し前の1856年,H.ベッセマーは転炉法を発明したが,これは溶けた銑鉄を炉の中に入れ炉の底から空気を吹き込むことにより,銑鉄中の炭素やケイ素を酸化させ,その際発生する熱を利用して溶けた鋼をつくるというものである。このベッセマーの方法では,材料の性質を一般に悪くする鉄中のリンを取り除くことは困難であった。S.G.トマスは塩基性の耐火煉瓦を用いることによってこの問題を解決したが,転炉法では溶けた銑鉄を用いなければならないのに対し,平炉法では屑鉄を大量に使用できることなどから,1949年に純酸素上吹転炉の工業化が成功するまで,平炉法が製鋼における主流であった。現在では純酸素転炉法が製鋼法の中心であり,とくに日本においては平炉はほとんど用いられなくなっている。

 鋼を焼き入れると硬化するということは,前述したように古代エジプトの鉄器が焼き入れられていたことや,古代ギリシアの錬金術の文書に焼入材の性質の重要性が記されていることなどからもわかるように,古くから知られていた。しかしそのような鋼の熱処理技術は長い間いわゆる秘伝として,非常に限られた人々の間でのみ伝えられてきた。また鍛鉄,鋼,鋳鉄の違いが炭素量の相違によるものであることは長い間理解されないままであった。鋼が焼入れによって硬化する原因,鍛鉄,鋼,鋳鉄の違いなどに初めて近代的な科学のメスを入れたのはフランスのR.A.F.deレオミュールである。彼は鉄が鋼に変化するときにフロギストンを得るという考えから脱して,鋼の硬化機構に関する最初の近代的理論を示した。鍛鉄,鋼,鋳鉄の中には炭素が入っており,それぞれ炭素の量が異なることを明らかにしたのはスウェーデンのベリマンTorbern Olof Bergman(1735-84)である。19世紀に入るとベリマンの成果はドイツのカルステンKarl Johann Bernhard Karsten(1782-1853),ランパディウスWilhelm August Lampadius(1772-1842)らによって引き継がれ,高炉では吸炭が,精錬炉では脱炭が,浸炭法では吸炭が生じることなどが明らかにされた。また合金鋼に関するM.ファラデーの研究,鉄鋼の変態点に関するロシアのチェルノフDmitrii K.Chernov(1839-1921)の研究,鉄鋼の顕微鏡組織に関するイギリスのソルビーHenry Clifton Sorby(1826-1908)やドイツのマルテンスAdolf Martens(1850-1914)の研究,鉄鋼の変態に関するフランスのF.オスモンの研究,鋼中の炭素の役割に関するイギリスのJ.O.アーノルドの研究,鉄鋼の状態図に関するイギリスのオーステンWilliam Roberts Austen(1843-1902)やオランダのローゼボームHendrik Willem Bakhuis Roozeboom(1854-1907)らの研究が相次ぎ,鋼の硬化と熱処理,組織,状態図との関係など,今日の鋼の物理冶金学の基礎が築かれた。鋼の組織の名前であるソルバイト,マルテンサイト,オーステナイト,トルースタイト,レーデブライトなどは,それらの先人の業績にちなんで命名された。20世紀になると鋼の硬化理論,熱処理論は他分野の科学の発展の影響や新しい実験手段の出現により急速に進歩して今日のものとなるが,その道は決して平たんなものではなかった。たとえば,19世紀末から始まった鋼の硬化の原因に関するいわゆる〈β鉄論争〉は世界中の金属学者をその渦の中にまき込んだが,決着をみたのはスウェーデンのウェストグレンArne WestgrenがX線によりα鉄,β鉄,γ鉄,δ鉄おのおのの格子型を明らかにした1921年になってからであった。現在では焼入れによる鋼の硬化は冷却中に生じるマルテンサイトによることが明らかにされている。

柴田 浩司
図-鉄-炭素準安定系平衡状態図
図-鉄-炭素準安定系平衡状態図
表-鋼の分類
表-鋼の分類